

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO AMAZONAS

CAMPUS MANAUS DISTRITO INDUSTRIAL

Curso: ENGENHARIA DE CONTROLE E AUTOMAÇÃO

OBJETIVOS

Apresentar ao aluno os conceitos e aplicações de lógica e operação dos circuitos digitais.

DISCIPLINA:	PERÍODO	C.H. Semanal:	C.H. Total:
Sistemas Digitais	6 º	4h	80h
PRÉ-REQUISITO (S)		C. H. Teórica: 56 h	
Eletrônica Analógica			
		C. H. Prática: 24 h	

CONTEUDO PROGRAMÁTICO

- 1. Conceitos introdutórios
 - 1.1 Representações numéricas;
 - 1.2 Sistemas digitais e analógicos;
 - 1.3 Sistemas de numeração digital;
 - 1.4 Representação de quantidades binárias;
 - 1.5 Circuitos digitais/lógicos;
 - 1.6 Transmissão série e paralelo;
 - 1.7 Memória;
 - 1.8 Computadores digitais.
- 2. Sistema de numeração e códigos
 - 2.1 Conversões binário-decimal e decimal-binário;
 - 2.2 Sistema de numeração octal;
 - 2.3 Sistema de numeração hexadecimal;
 - 2.4 Código BDC;
 - 2.5 Códigos alfas-numéricos;
 - 2.6 Método da paridade para detecção de erros.
- 3. Portas lógicas e álgebra booleana
 - 3.1 Constantes e variáveis booleanas;
 - 3.2 Tabelas-verdade;
 - 3.3 Operação OR com portas OR;
 - 3.4 Operação AND com portas AND;
 - 3.5 Descrevendo circuitos lógicos algebricamente;
 - 3.6 Determinando o valor da saída de circuitos lógicos;
 - 3.7 Implementando circuitos a partir de expressões booleanas;
 - 3.8 Portas NOR e NAND;
 - 3.9 Teoremas da álgebra booleana;
 - 3.10 Teoremas de DeMorgan.
- 4. Circuitos lógicos combinacionais
 - 4.1 Forma de soma e de produto;
 - 4.2 Simplificação de circuitos lógicos e algébrica;
 - 4.3 Projetando circuitos lógicos combinacionais;
 - 4.4 Método do mapa de Karnaugh;
 - 4.5 Circuitos exclusive-OR e exlusive-NOR;

- 4.6 Circuitos gerador e verificador de paridade;
- 4.7 Características básicas de CIs digitais;
- 5. Flip-Flops e dispositivos correlatos
 - 5.1 Latch com portas NAND;
 - 5.2 Latch com portas NOR;
 - 5.3 Sinais de clock;
 - 5.4 Flip-flop S-C com clock, J-K com clock e D com clock;
 - 5.5 Latch D
 - 5.6 Entradas assíncronas:
 - 5.7 Flip-Flops mestre/escravo;
 - 5.8 Aplicações com Flip-Flops;
 - 5.9 Sincronização de Flip-Flops.
- 6. Registradores
 - 6.1 Contadores assíncronos;
 - 6.2 Contadores de módulos:
 - 6.3 Circuitos integrados de contadores assíncronos;
 - 6.4 Contador assíncrono decrescente;
 - 6.5 Contadores síncronos:
 - 6.6 Contadores síncronos decrescente e crescentes/decrescente:
 - 6.7 Contadores com carga paralela;
 - 6.8 Contadores com registradores de deslocamento.
- 7. Circuitos lógicos
 - 7.1 Decodificadores;
 - 7.2 Codificadores:
 - 7.3 Multiplexadores;
 - 7.4 Demultiplexadores;
 - 7.5 Conversores de códigos:
 - 7.6 Barramento de dados.
- 8. Interface com o mundo analógico
 - 8.1 Conversão digital-analógico (D/A);
 - 8.2 Circuitos conversores D/A;
 - 8.3 Especificações de conversores D/A;
 - 8.4 Conversão analógico-digital (A/D);
 - 8.5 Conversor A/D de rampa digital;
 - 8.6 Voltímetro digital;
 - 8.7 Circuitos de amostragem;
 - 8.8 Multiplexação;
 - 8.9 Osciloscópio de memória digital.

BIBLIOGRAFIA BÁSICA

- 1. WIDMER, N. S.; TOCCI, R. J., Sistemas Digitais. 10ª Ed., Prentice Hall, 2007.
- 2. IDOETA,I.V.; CAPUANO, F.G., **Elementos de Eletrônica Digital**, 40ª ed., São Paulo, Editora Érica, 2006.
- 3. FLOYD, T. L.; Sistemas Digitais: Fundamentos e Aplicações, 9ª ed., Bookman, 2007.

BIBLIOGRAFIA COMPLEMENTAR

- 1. GARCIA, P. A.; MARTINI, J. S. C., Eletrônica Digital: Teoria e Laboratório, 1ª. ed., São Paulo, Editora Érica, 2006.
- 2. TOCCI, R. J., WIDMER, N. S., Sistemas Digitais, 7º Edição. São Paulo: Prentice- Hall, 1998.